Symplectic and contact differential graded algebras
نویسندگان
چکیده
We define Hamiltonian simplex differential graded algebras (DGA) with differentials that deform the high-energy symplectic homology differential and wrapped Floer homology differential in the cases of closed and open strings in a Liouville manifold of finite type, respectively. The order-m term in the differential is induced by varying natural degree-m coproducts over an .m 1/–simplex, where the operations near the boundary of the simplex are trivial. We show that the Hamiltonian simplex DGA is quasi-isomorphic to the (nonequivariant) contact homology algebra and to the Legendrian homology algebra of the ideal boundary in the closed and open string cases, respectively.
منابع مشابه
Graded Differential Geometry of Graded Matrix Algebras
We study the graded derivation-based noncommutative differential geometry of the Z2-graded algebra M(n|m) of complex (n+m)× (n+m)-matrices with the “usual block matrix grading” (for n 6= m). Beside the (infinite-dimensional) algebra of graded forms the graded Cartan calculus, graded symplectic structure, graded vector bundles, graded connections and curvature are introduced and investigated. In...
متن کاملSome Ihx-type Relations on Trivalent Graphs and Symplectic Representation Theory
We consider two types of graded algebras (with graded actions by the symplectic Lie algebra) that arise in the study of the mapping class group, and describe their symplectic invariants in terms of algebras on trivalent graphs.
متن کاملGerstenhaber Brackets for Skew Group Algebras
Hochschild cohomology governs deformations of algebras, and its graded Lie structure plays a vital role. We study this structure for the Hochschild cohomology of the skew group algebra formed by a finite group acting on an algebra by automorphisms. We examine the Gerstenhaber bracket with a view toward deformations and developing bracket formulas. We then focus on the linear group actions and p...
متن کاملThe Prime and Primitive Spectra of Multiparameter Quantum Symplectic and Euclidean Spaces
We investigate a class of algebras that provides multiparameter versions of both quantum symplectic space and quantum Euclidean 2n-space. These algebras encompass the graded quantized Weyl algebras, the quantized Heisenberg space, and a class of algebras introduced by Oh. We describe the structure of the prime and primitive ideals of these algebras. Other structural results include normal separ...
متن کاملKnot and Braid Invariants from Contact Homology I
We introduce topological invariants of knots and braid conjugacy classes, in the form of differential graded algebras, and present an explicit combinatorial formulation for these invariants. The algebras conjecturally give the relative contact homology of certain Legendrian tori in five-dimensional contact manifolds. We present several computations and derive a relation between the knot invaria...
متن کامل